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AbstractÐA numerical method to simulate liquid±vapor phase change is presented. The method is
based on the so-called single ®eld formulation where one set of equations for conservation of mass,
momentum and energy are written for the entire ¯ow ®eld. Interfacial source terms for surface tension,
interphase mass transfer and latent heat are added as delta functions that are non-zero only at the
phase boundary. The equations are discretized by a ®nite di�erence method on a regular grid and the
phase boundary is explicitly tracked by a moving front. A comparison of numerical results to the exact
solution of a one-dimensional test problem shows excellent agreement. The method is applied to ®lm
boiling, where vapor bubbles are generated from a thin ®lm next to a hot wall. Although the ®lm boil-
ing simulations presented here are two-dimensional, the resulting heat transfer rate and wall tempera-
tures are found to be in good agreement with experimental observations. # 1998 Published by Elsevier
Science Ltd. All rights reserved
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1 . INTRODUCTION

Owing to the ability of ¯uids to compactly store or liberate large amounts of energy in the form
of latent heat upon phase change, boiling and condensation are key processes in the extraction
of energy from solar, fossil and nuclear fuels for human use. Among other applications, liquid±
vapor phase change is important in the petroleum industry for oil re®nement and is currently
being investigated by the electronics industry as an e�ective cooling mechanism for high heat
¯ux electronic devices (Ammerman et al. 1996).

Despite its importance and the vast body of research on boiling, the fundamental physical
mechanisms involved are far from being understood (Lienhard 1994). Experimental studies have
led to the development of numerous empirical correlations speci®c to particular modes of boil-
ing and surface geometries. However, a more basic understanding is hindered by the small
spatial scales and the rapidity of the phase change process both of which make it very di�cult
to obtain the necessary experimental measurements. Analytical and numerical e�orts to under-
stand boiling have focused mainly on simple models of vapor bubble dynamics. An assumed
interface shape along with various assumptions concerning surface tension, ¯uid viscosity and
vapor phase velocity and temperature are usually incorporated. Rayleigh (1917) formulated a
simpli®ed equation of motion for inertia controlled growth of a spherical vapor bubble.
Rayleigh's analysis was extended by, among others, Plesset and Zwick (1954), Prosperetti and
Plesset (1978), Mikic et al. (1970), Dalle Donne and Ferranti (1975) and Lee (1993) to include
thermal and surface tension dominated growth regimes. Lee and Nydahl (1989) and Patil and
Prusa (1991) numerically studied hemispherical bubble growth in nucleate boiling.

The complete phase change problem is highly dependent on the simultaneous coupling of
many e�ects none of which can typically be ignored. The modeling of mass, momentum and
energy transport must include surface tension, latent heat, interphase mass transfer, discontinu-
ous material properties and complicated liquid±vapor interface dynamics. Phase change with
¯uid ¯ow is among the more di�cult challenges for direct numerical simulations and only
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recently have numerical methods begun to o�er the promise of helping to provide accurate pre-
dictions of the detailed small scale physical processes involved. Welch (1995) has made progress
in using a two-dimensional, moving mesh, ®nite volume method to solve the mass, momentum
and energy equations for liquid±vapor ¯ows with phase change. However, this method is
restricted to ¯ows with only small distortion of the liquid±vapor interface. Son and Dhir (1995)
use a moving mesh ®nite di�erence method for two-dimensional simulations of phase change.
Using grid generation techniques they study the heat transfer and interface behavior in ®lm boil-
ing up to the point of bubble departure.

In this paper we present a two-dimensional front tracking/®nite di�erence method for ¯uid
¯ow with phase change that enables the simulation of problems with complex motion of the
liquid±vapor interface: large interface deformations and topology change. The e�ects of inter-
phase mass transfer, latent heat, surface tension and unequal material properties between liquid
and vapor phases are included. The method is based on a ®nite di�erence approximation of the
Navier±Stokes and energy equations on an unmoving, structured grid and an explicit tracking
of the phase boundary on a moving, unstructured grid. The method is an extension of tech-
niques already developed for isothermal, multi¯uid ¯ows without phase change in both two and
three dimensions by Unverdi and Tryggvason (1992). The multi¯uid code has been used to in-
vestigate the collision of drops (Nobari et al. 1996), thermal migration of drops (Nas and
Tryggvason 1993) and the motion of clouds of bubbles (Esmaeeli and Tryggvason 1996). The
phase change method presented below has also been applied to certain types of combustion pro-
blems (Qian et al. 1997).

In the following sections of this paper we describe an extensive reformulation of the original
isothermal method to allow for ¯uid ¯ow with phase change. Section 2 is devoted to the math-
ematical formulation of the phase change problem and Section 3 to the description of the front
tracking/®nite di�erence method. In Section 4 we present results from validation tests of the
method. Also in Section 4 we focus on the problem of ®lm boiling from an upward facing,
heated, ¯at surface. We present two-dimensional simulations and compare heat transfer results
with correlations of experimental data. In Section 5 we discuss some conclusions from this
study.

2 . MATHEMATICAL FORMULATION

Boiling involves both ¯uid ¯ow and heat transfer and thus requires the solution of the
Navier±Stokes and energy equations. We can write a set of transport equations which is valid in
both the liquid and vapor phases. This local, single ®eld formulation incorporates the e�ect of
the interface in the equations as source terms which act only at the interface. These sources
account for surface tension and latent heat in the equations for conservation of momentum and
energy and for mass transfer across the interface due to phase change in the conservation of
mass.

We begin by specifying the material properties which are considered to be constant, but not
generally equal for each phase. As a consequence, the bulk ¯uids are incompressible, but we
allow for volume expansion (contraction) at the phase interface due to the density change upon
vaporization (condensation). Equations for the material property ®elds can be written for the
entire domain using an indicator function, I(x,t), which has the value 1 in the vapor phase and
0 in the liquid phase. The values of the material property ®elds at every location are then given
by

b�x,t� � bL � �bG ÿ bL�I�x,t�, �1�
where the subscripts G and L refer to the vapor and liquid phases respectively. b stands for den-
sity, r, speci®c volume, v̂ � 1=r, viscosity, m, speci®c heat, c or thermal conductivity, k.
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To ®nd I(x,t) we express it in terms of an integral over a three-dimensional delta function

I�x,t� �
�
O�t�

d�xÿ x 0�dV 0: �2�

The integral is over a volume, O(t), bounded by the phase interface, G(t). d(xÿ x') is a three-

dimensional delta function that is non-zero only where x' = x. I(x,t) is obviously 1 if x is within

G(t) and 0 otherwise. Taking the gradient of [2] and transforming the volume integral into an

integral over the phase interface yields

rI �
�
G�t�

nd�xÿ xs�ds, �3�

where n is the unit normal to the interface, de®ned to point into the vapor phase and xs=x(s,t)

is a parameterization of G(t). Taking the divergence of [3] results in

r2I � r �
�
G�t�

nd�xÿ xs�ds: �4�

Thus we ®nd I(x,t) by solving the above Poisson equation where the right-hand-side is a func-

tion only of the known interface position at time t. The interface is advected in a Lagrangian

fashion by integrating

dxs
dt
� n � Vn, �5�

where Vn=V�n. V is the interface velocity vector and Vn its normal component. Only the nor-

mal component of the interface motion is determined by the physics. The tangential motion is

not and we may assume that the interface and ¯uid at the interface have the same tangential

component of velocity (Ishii, 1975).

The conservation of mass equation is also written for the entire ¯ow ®eld

@r
@t
� r � w � 0: �6�

Here w = ru is the ¯uid mass ¯ux and u is the ¯uid velocity ®eld. The time derivative of the

density can be rewritten in a more useful form since the density at each point in the domain, [1],

depends only on the indicator function which is determined by the known interface location.

With the indicator function, I(x,t), to represent the interface, the kinematic equation for a sur-

face moving with velocity, V, is

@I

@ t
� ÿV � rI � ÿ

�
G�t�

Vnd�xÿ xs�ds: �7�

Using [7] and [1] for the density, the conservation of mass, [6], can be rewritten as

r � w �
�
G�t�
�rG ÿ rL�Vnd�xÿ xs�ds: �8�

The momentum equation is written for the entire ¯ow ®eld and the forces due to surface ten-

sion are inserted at the interface as body forces which act only at the interface. In conservative

form this equation is

@w

@ t
� r � �wu� � ÿrP� rg� r � ttt�

�
G�t�

gknd�xÿ xs�ds, �9�

where P is the pressure, g is the gravitational force, g is the surface tension coe�cient, k is twice

the mean interface curvature which is positive when the center of curvature lies in the vapor

phase and t is the deviatoric stress tensor for a Newtonian ¯uid
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ttt � m�ru� ruT �: �10�
The integral term in [9] accounts for surface tension acting on the interface. (In order to limit
the scope of our study we have assumed that the surface tension coe�cient is constant and thus
ignored tangential variations in g along the interface. For a study of Marangoni ¯ows using the
front tracking method see Nas and Tryggvason (1993).

The thermal energy equation with an interfacial source term to account for liberation or
absorption of latent heat is

@

@ t
�rcT � � r � �wcT � � ÿr � q� ttt:ruÿ

�
G�t�

_m�L� �cL ÿ cG�Tsat�d�xÿ xs�ds: �11�

We assume that the constitutive relation for the heat ¯ux, q =ÿ kHT, holds throughout the
entire domain. tt:Hu is the viscous dissipation which we include here in the formulation, but
neglect in the numerical implementation. T is the temperature and L is the latent heat measured
at the equilibrium saturation temperature, Tsat(P1), corresponding to the reference ambient sys-
tem pressure, P1. Unless explicitly written otherwise, Tsat will refer to Tsat(P1) throughout the
remainder of the paper. _m is the interfacial mass ¯ux

_m � rL�uL ÿ V� � n � rG�uG ÿ V� � n: �12�

It is important to recognize that away from the interface the single ®eld formulation, [8], [9]
and [11], reduces to the customary mass, momentum and thermal energy equations for each of
the bulk ¯uids while at the interface the formulation naturally incorporates the correct mass,
momentum and energy balances across the interface. Integration of [8], [9] and [11] across the
interface yields [12] above for the mass balance and

PG ÿ PL � ÿ _m2

�
1

rG
ÿ 1

rL

�
� �tttG � n� � nÿ �tttL � n� � n� gk, �13�

�tttG � n� � t � �tttL � n� � t, �14�

�qG ÿ qL� � n � ÿ _m�L� �cG ÿ cL��Ts ÿ Tsat��

ÿ _m3

2

�
1

r2G
ÿ 1

r2L

�
� _m

� �tttG � n� � n
rG

ÿ �tttL � n� � n
rL

�
�15�

for the normal momentum, tangential momentum and thermal energy, respectively. (Note that
for a static interface, [13] reduces to the well-known Laplace equation, PGÿPL=gk.) These
jump conditions are identical to those derived by Delhaye (1974) and Ishii (1975) except where
we have made the assumptions that the interface is thin and massless, the surface tension coe�-
cient, g, is constant and the energy contribution due to interface stretching is negligible. In the
above equations, Ts=T(xs) is the interface temperature and t is the unit tangent to the interface.
In deriving [14] and [15] it was postulated that there is no-slip in the tangential ¯uid velocities
across the interface,

uG � t � uL � t � V � t �16�
and that the temperatures of the vapor and liquid at the interface are equal

TG � TL � Ts: �17�

2.1. Interface temperature condition

To complete our formulation we need to provide an equation for the interface temperature,
Ts. Customarily, it is assumed that the interface temperature is simply equal to the equilibrium
saturation temperature corresponding to the system pressure
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Ts � Tsat�P1�: �18�
In many cases this is an obvious and adequate assumption for macroscale boiling problems

but for the microscale problems of interest here we cannot assume [18] a priori. The di�culty in
using [18] can be illustrated by observing that when there is a pressure jump, PG$PL, across the
interface, as required by [13], then obviously the equilibrium saturation temperatures corre-
sponding to those pressures cannot be equal

Tsat�PG� 6� Tsat�PL�: �19�
This leaves the question of what value to choose for Ts. To deal with this problem, two

approaches to modeling the temperature at the interface have been taken in the literature
(Huang and Joseph 1992; Huang and Joseph 1993). The ®rst approach assumes [17], but a
departure from thermodynamic equilibrium saturation temperatures at the interface, i.e.
Tsat(PG)$TG=Ts=TL$Tsat(PL), (Delhaye 1974). The second approach begins with the kinetic
theory of gases, assumes that, at the interface, the temperatures are at their thermodynamic
equilibrium saturation values, but allows a temperature discontinuity at the interface, i.e.
Tsat(PG) = TG$TL=Tsat(PL), (Schrage 1953).

The correct choice of the temperature boundary condition at a phase interface is still an unre-
solved issue. However, with some minor assumptions, both approaches lead to the same con-
cept: an interfacial resistance to mass transfer across the interface. Using kinetic theory,
Tanasawa (1991) derives an approximate expression for the mass transfer across a simpli®ed
liquid±vapor interface

Ts ÿ Tsat � ÿ _m

j
�20�

where the so-called kinetic mobility, j, describes the relative force of molecular attachment to a
surface (the resistance to mass transfer across the interface)

j � 2a
�2ÿ a�

L�����������������
2pRTsat

p 1

�v̂G ÿ v̂L�Tsat
: �21�

R is the gas constant and a is the evaporation coe�cient. a represents the fraction of molecules
that depart the interface during vaporization. Its measurement is di�cult and values range from
0.04 to 1 depending on the ¯uid (Tanasawa 1991).

In order to determine a general expression for Ts we begin with the principle of balance of
entropy across the interface, i.e. the entropy jump condition, and investigate under what con-
ditions [18] is valid. The balance of entropy across the interface together with [16] and [17] lead
to an expression for the jump in the Gibbs function, g = hÿTs, (h is the enthalpy and s the
entropy) across the interface (Delhaye 1974; Ishii 1975)

_m�gG ÿ gL� � ÿ _m3

2

�
1

r2G
ÿ 1

r2L

�
� _m

� �tG � n� � n
rG

ÿ �tL � n� � n
rL

�
� Tss

0, �22�

where s' is the irreversible production of entropy at the interface due to the phase change. A
natural assumption is that s' is a quadratic function of _m and the kinetic mobility, j
(Truskinovsky 1993)

Tss
0 � _m2L

jTsat
: �23�

Thus the interfacial production of entropy is modeled as a resistance to mass transfer across the
interface, an approach commonly used in solidi®cation (Tarshis and Tiller 1966).

[13] and [22] with their right hand sides set equal to zero together with the thermodynamic
property relation, dg � v̂dPÿ sdT , lead to the usual equilibrium Clausius±Clapeyron equation
for a ¯at, static interface

dP

dT
� sG ÿ sL

v̂G ÿ v̂L
, �24�
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which can be integrated from (Tsat, P1) to (Ts,Ps) to give an expression for the interface tem-

perature (Alexiades and Solomon 1993)

Ts ÿ Tsat � Tsat

L

�
1

rG
ÿ 1

rL

�
�Ps ÿ P1� ÿ �cG ÿ cL�Tsat

L

�
Ts ln

Ts

Tsat
� Tsat ÿ Ts

�
: �25�

P1 and Ps are the reference ambient system pressure and the pressure at the interface, respect-

ively.

In general the interface is neither ¯at, nor is its motion reversible. Thus considering [13] and

[22] with right-hand-sides included leads, by an analogous procedure, to a more complex, but

more complete, expression for the interface temperature

where we have linearized the logarithm term and made the assumption that the interface press-
ure is the average of the pressures in the liquid and vapor at the interface, Ps=(PG+PL)/2.
Using arguments from irreversible thermodynamics together with kinetic theory Bornhorst and
Hatsopoulos (1967a,b) derived a similar equation for the case of spherical bubble growth.

Clearly the above equation reduces to [18] if all of the boxed terms on the right side are neg-
lected and to [20] if terms A±D can be neglected. In order to investigate the importance of these
terms relative to Tsat we have performed a simple scale analysis for several di�erent ¯uids.

If we consider a typical situation in saturated pool ®lm boiling where the imposed wall heat
¯ux, qw, is equal to the heat ¯ux in the vapor, qG�n, and the heat ¯ux in the liquid, qL�n, is
small, then [15] (ignoring the last two terms and the di�erence in speci®c heats) gives a reason-
able average estimate of _m over the entire interface

_m � ÿ qw
L
: �27�

Experimental boiling curves for various ¯uids indicate that qw/L ranges from about 0.1 at the
minimum ®lm boiling point to above 3 for very high heat ¯ux ®lm boiling.

We introduce suitable scales of length, ld=2p(3g/G(rLÿrG))1/2, velocity, (Gld)1/2, and press-
ure (measured from P1), rLGld, where G is Earth gravity and ld is the most unstable wave-
length of the inviscid Rayleigh±Taylor instability. Taking as examples the properties of
hydrogen, water, nitrogen and R-113 (Maddox 1983), table 1 indicates the magnitudes, as a per-
centage of Tsat, of the ®ve boxed terms on the right side of [26], labeled A±E, consecutively.

Table 1. Relative magnitudes of the boxed terms on the right side of [26] as a percentage of Tsat. Values are given in per
cent. Thermal properties are from Maddox (1983)

Term in [26]

Fluid P1 (atm) A B C D E

H2 8 0.13 0.001 0.065 5.1�10ÿ6 0.35
H2 1 2.1 0.021 0.9 4.8�10ÿ5 1.90
H2O 1 19.0 3.68 8.0 3.9�10ÿ4 1.22
N2 1 10.0 0.92 4.2 5.2�10ÿ4 0.65
R-113 1 17.0 6.76 7.2 1.3�10ÿ3 0.44

[26]
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For, C, the surface tension term, we anticipate maximum curvatures in our calculations on the
order of 100/ld. For the calculation of the entropy production term, E, we used [21] for j, with
a = 1 and [27] for _m, with qw/L = 1. We note that the values in column E represent an average
_m over the entire interface. In reality, most of the vaporization takes place along select portions
of the interface that lie close to the heated wall. These regions can have values of _m one or two
orders of magnitude higher than the average. For the speci®c heat term, B, we estimated
TsÿTsat iteratively.

We conclude that we can safely neglect the term due to viscous stress, D, in [26]. Tests of our
code on ®lm boiling of hydrogen, described later in Section 4, indicate that terms A, B and C
are relatively small for hydrogen and neglecting them only slightly alters the results. We also
®nd that term E can be neglected, but only up to the point where the interface comes close to
the heated wall. In general we retain terms A, B, C and E and thus the interface temperature
condition that we use is

Ts ÿ Tsat ÿ Tsat

L

�
1

rG
ÿ 1

rL

�
�Ps ÿ P1� � �cG ÿ cL�

L
�Ts ÿ Tsat�2

ÿ gTsatk
2L

�
1

rL
� 1

rG

�
� _m

j
� 0: �28�

In two-dimensions the set of [1], [4], [5], [8], [9] and [11] along with the interface temperature
condition, [28], are 11 equations in 11 unknowns. The numerical method for their solution is
described in the following section.

3 . NUMERICAL METHOD

The numerical technique combines ideas from the front tracking methods developed originally
for isothermal multi¯uid ¯ows (Unverdi and Tryggvason 1992) and solidi®cation without ¯uid
¯ow (Juric and Tryggvason 1996). The addition of phase change and heat transfer to the ¯uid
dynamics problem has required extensive reformulation of the original isothermal method. In
this section we place emphasis on describing the new concepts and essential features of the
method as it is applied to boiling ¯ows and speci®cally to the numerical solution of the set of
equations given above.

3.1. Front tracking

The interface is represented by separate, non-stationary computational points connected to
form a one-dimensional front which lies within the two-dimensional stationary mesh. The inter-
face points are used to calculate geometric information. We ®nd the curvature, normal and tan-
gent at each interface point by ®tting a fourth-order polynomial through each point and two
adjacent points on either side of that point. The front is advected normal to itself in a
Lagrangian fashion by the discrete form of [5]ÿ

xn�1s ÿ xns
� � nn�1 � DtVn, �29�

where superscript n denotes the time level. The motion of the front is in turn used to advect the
discontinuous material property ®elds, [1], by solving the Poisson equation, [4], for the indicator
function, I(x,t), at xn�1s .

The interface deforms greatly in our simulations and it is necessary to add and delete interface
points during the course of the calculation such that the distance between adjacent points, r, is
maintained on the order of the stationary grid spacing. For our simulations we have used
0.4 < 2r/(hx+hy) < 1.6 where hx and hy are, respectively, the horizontal and vertical grid cell
dimensions. To accommodate topology changes, interfaces are allowed to reconnect when either
parts of the same interface or parts of two separate interfaces come close together. The instan-
taneous change in topology is, of course, only an approximation of what happens in reality.
Since it is not well known at what distance the interfaces will coalesce when brought together
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and we cannot resolve distances down to such a small scale, we arti®cially reconnect the inter-
face when two points come closer than a small distance, usually on the order of a grid cell size.
This distance is chosen rather arbitrarily for lack of a better physical model, but here the advan-
tage of front tracking is evident since we can control and vary the distance at which interfaces
merge and study the e�ect on topology changes. While the above modi®cations to the interface
are a major task for fully three-dimensional simulations, here the interface is simply a line and
they are relatively straightforward. The interface points are connected by forward and backward
linked lists and interface restructuring is simply a matter of resetting pointers.

At each time-step, information must be passed between the moving Lagrangian interface and
the stationary Eulerian grid since the Lagrangian interface points, xp, do not necessarily coincide
with the Eulerian grid points, xij. This is done by a method that has become known as the
Immersed Boundary Technique which was introduced by Peskin (1977) for the analysis of blood
¯ow in the heart. With this technique, the in®nitely thin interface is approximated by a smooth
distribution function that is used to distribute the sources at the interface over grid points near-
est the interface. In a similar manner, this function is used to interpolate ®eld variables from the
stationary grid to the interface. In this way, the front is given a ®nite thickness on the order of
the mesh size to provide stability and smoothness. There is also no numerical di�usion since
this thickness remains constant for all time.

Writing the integrals in [4], [8], [9] and [11] in a general form

F �
�
G�t�

fd�xÿ xs�ds, �30�

the discrete interface sources, fp, can be distributed to the grid and the discrete ®eld variables,
Rij (representing w, P or T ), can be interpolated to the interface by the discretized summations

Fij �
X
p

fpDij�xp�Dlp, �31�

Rp �
X
ij

hxhyRijDij�xp�, �32�

where Dlp is the average of the straight line distances from the point p to the two points on
either side of p.

[31] is the discretized form of [30] where we have approximated the Dirac function by the dis-
tribution function, Dij. For xp=(xp,yp) we use the distribution function suggested by Peskin and
McQueen (1994)

Dij�xp� � d�xp=hx ÿ i �d� yp=hy ÿ j �
hxhy

, �33�

where

d�r� �
d1�r�, jrjR1,

1=2ÿ d1�2ÿ jrj�, 1< jrj< 2,
0, jrjr2,

8<:
and

d1�r� � 3ÿ 2jrj �
����������������������������
1� 4jrj ÿ 4r2

p
8

:

3.2. Finite di�erence method

Once the source terms in [4], [8], [9] and [11] have been distributed to the grid these equations
are then discretized and solved using the following ®nite di�erence techniques.
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To calculate the material property ®elds, [1], we ®rst ®nd the indicator function using a fast
Poisson solver to solve [4]

r2
hI

n�1 � rh �Gn�1: �34�

The subscript h denotes a ®nite di�erence approximation to the operator. Here G is the approxi-
mation to the surface integral in [4] calculated using [31]. The indicator function calculated in
this way is constant within each material region, but has a ®nite thickness transition zone
around the interface. In this transition zone the indicator function and thus the material proper-
ties change smoothly from the value on one side of the interface to the value on the other side.
The thickness of the transition zone is only a function of the mesh size and is constant during
the calculation. No numerical di�usion is introduced. Another advantage of this approach is
that close interfaces can interact in a natural way since contributions to G calculated from the
grid distribution, [31], simply cancel.

Next we calculate the ¯uid variables u, P and T by means of a phase change projection
method. Using a ®rst order, forward Euler time integration the discrete form of [8] and [9] can
be written as

rh � wn�1 �M n�1, �35�

wn�1 ÿ wn

Dt
� An � Fn�1 ÿ rhP, �36�

where the advection, di�usion and gravitational terms in [9] are lumped into A and the surface
integrals in [8] and [9] are denoted by M and F, respectively.

Following the spirit of the projection algorithm of Chorin (1968), we split the momentum
equation into

~wÿ wn

Dt
� An � Fn�1 �37�

and

wn�1 ÿ ~w

Dt
� ÿrhP, �38�

where we introduce the variable ~w which is the new ¯uid mass ¯ux if the e�ect of pressure is
ignored. The ®rst step is to ®nd this mass ¯ux using [37]

~w � wn � Dt�An � Fn�1�: �39�
Then the pressure is found by taking the divergence of [38] and using [35]. This leads to a
Poisson equation for the pressure

r2
hP �

rh � ~wÿM n�1

Dt
, �40�

which can be solved using a standard fast Poisson solver. The updated mass ¯ux is then found
from [38]

wn�1 � ~wÿ DtrP: �41�
The updated velocity is simply un+1=wn+1/rn>+1.

Once the velocity is known, the discretized energy equation, [11], is solved for the temperature
®eld

T n�1 � rncnT n � Dt�Bn �Qn�1�
rn�1cn�1

, �42�

where the advection and di�usion terms in [11] are lumped into B and the surface integral in
[11] is denoted by Q.
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Note that the time integration is explicit but the source terms, G, M, F and Q, are evaluated
in [31] implicitly at the new time n + 1. An important advantage of this is that stability con-
straints on the time step due to propagation of capillary waves are removed by the implicit
treatment of surface tension, F.

For the spatial discretization we use the staggered mesh, MAC method of Harlow and Welch
(1965). The pressure, temperature, and indicator function are located at the cell centers, the
x-component of velocity at vertical cell faces and the y-component of velocity at horizontal cell
faces. The spatial derivatives are approximated by second-order centered di�erences.

The calculation of the stresses in A requires special treatment due to the ®nite numerical
thickness of the transition zone across the interface. Due to the phase change, the divergence of
the velocity ®eld is non-zero in a ®nite zone around the interface, and this results in an arti®cial
normal viscous stress that can cause local pressure spikes. To avoid this di�culty we subtract
the stresses due to this non-zero divergence from the viscous stresses. Thus A is

A � ÿrh � �wu� � rg� rh � m�rhu� rhuT ÿ 2�rh � u�jI�, �43�
where I is the identity tensor. Note that if viscous dissipation had been included in the energy
equation a similar correction would have been necessary for that term.

3.3. Iterative solution procedure

Given an initial interface shape the indicator function and material property ®elds are calcu-
lated from [34] and [1]. With appropriate initial conditions for the velocity, and temperature the
solution algorithm proceeds iteratively through the following steps:

1. Bn is calculated for [42]. An is calculated for [36] using [43].
2. Using an estimate of the normal interface velocity, Vn, the interface is advected to a new pos-

ition by [29].
3. At this new interface position, the source terms Gn+1, Mn+1, Fn+1 and Qn+1 are calculated

using [31].
4. The density, rn+1, and speci®c heat, cn+1 at the new interface position are found from the

solution to [34] and [1].
5. With appropriate wall boundary conditions and An and Bn calculated in step 1, [35], [36] and

[42] are solved for the velocity, pressure and temperature at time n + 1 using the phase
change projection method described above.

6. The interface temperature condition, [28], is calculated: The temperature, pressure and ¯uid
mass ¯ux at time n + 1 are interpolated by [32] to ®nd the temperature, Ts, pressure, Ps, and
interfacial mass ¯ux, _m, at each point on the interface found in step 2.

7. If the interface temperature condition is satis®ed then the viscosity and thermal conductivity
®elds are updated to the new interface position found in step 2 by [34] and [1] and the com-
putation proceeds to the next time step. Otherwise, a new estimate for the updated normal
velocity, Vn, is found at each interface point using [44] below and the procedure returns to
step 2.

In the last step, the new estimate for Vn can be found by an iterative method. In general, if
the interface temperature, pressure and interfacial mass ¯ux found in step 6 are substituted into
[28] the right hand side of this equation will not equal zero, but some residual error, E(Vn). In
order to make this error converge to zero and thus satisfy [28] the iteration method described
below is used.

3.4. Modi®ed Newton iteration

In matrix form, the Newton iteration updates the unknown velocities at each point by the
equation,

Vl�1
n � Vl

n ÿ �J�ÿ1El�Vl
n�, �44�

where l is the iteration index. Vn and E are, respectively, the N� 1 column vectors of normal
interface velocities and errors at each point. N is the number of interface points. The Jacobian,
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J, is the N�N matrix of partial derivatives of the error with respect to the velocities. Since
these derivatives are di�cult to calculate and the subsequent matrix inversion would be compu-
tationally expensive, a di�erent Jacobian is used which has the simple form,

J � aÿ1I, �45�
where I is the identity matrix and a is a constant. This constant determines the rate of conver-
gence of the iteration. At the optimum value of a, which is di�erent for di�erent physical par-
ameters, the iteration converges rather quickly to a tolerance of E= 10ÿ5 in 3 to 10 iterations.
The tolerance is calculated by

E � max
ÿ
E,
��V l�1

np
ÿ V l

np

���,p � 1,N: �46�

Optimum values for a were determined through experimentation with the code and range
roughly between 1 and 10.

4 . RESULTS AND DISCUSSION

4.1. Comparison with an exact solution

We tested the numerical method by comparing numerical results with the exact solution of a
simple one-dimensional problem. The one-dimensional problem consists of a heat ¯ux, qw,
applied to the bottom of a rigid wall at y = 0. The domain contains a liquid 0RyR0.5 below
its vapor 0.5RyR1. The top of the domain at y = 1 remains open to allow for the vapor to
exit due to ¯uid expansion at the interface. The density ratio is set to rL/rG=2. All other ma-
terial properties are equal. To make the problem dimensionless we scale lengths by a reference
length, l, velocities by a reference velocity, Uo, the heat ¯ux by rLL and the pressure (measured
from the reference ambient system pressure, P1) by rLU

2
0. For this calculation qw=0.05 and

there is no gravity.
For slow interface motion the heat ¯ux in the liquid remains approximately constant and the

interface moves downward at a steady velocity. Then exact steady-state solutions for the inter-
face velocity, y-component of ¯uid velocity and pressure are

V � ÿqw, vL � 0, vG �
�
1ÿ rL

rG

�
V , P �

�
rL
rG
ÿ 1

�
V 2: �47�

After a short initial transient, the calculated interface velocity smoothly asymptotes to the cor-
rect steady state value of the exact solution, V=ÿ 0.05.

Results for the vertical ¯uid velocity, ®gure 1(a), and pressure, ®gure 1(b), are shown at
t = 1.4 for three grid resolutions, 10� 10, 20� 20 and 40� 40. Even at crude resolutions the nu-
merical results in the bulk liquid and vapor are in excellent agreement with the exact solution.
At the interface the exact solution is perfectly discontinuous while the numerical interface has a
®nite thickness which decreases as the resolution increases. This behavior demonstrates the con-
vergence with increasing grid resolution of the front tracking approach to modeling discontinu-
ities across an interface. The front tracking method inherently distributes the e�ects of the
interface smoothly to mesh points in a localized region near the interface. Thus as the resolution
increases these e�ects become sharper and more localized near the interface. Higher density
ratios, up to rL/rG=1000, were also tested and the results were equally as good.

4.2. Film boiling

We now turn to a more challenging test of the numerical method, the solution of a two-
dimensional ®lm boiling problem. In ®lm boiling, a layer of vapor is located below a layer of
liquid and completely blankets a heated surface. Gravity results in the onset of a Rayleigh±
Taylor instability of the liquid±vapor interface. The liquid falls toward the wall as the vapor
rises. Evaporation of the liquid as it approaches the hot wall prevents the liquid from contacting
the wall and provides vapor to the rising bubbles. A balance is maintained between vapor gener-
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Figure 1. A one-dimensional evaporation test problem. A heat ¯ux, qw=0.05 is applied to the wall at
y = 0. The domain contains a liquid 0RyR0.5 below its vapor 0.5RyR1. After a short time the
liquid evaporates and the liquid±vapor interface moves steadily downward. The density ratio is set to
rL/rG=2. All other material properties are equal. The numerical results for (a) the y-component of
¯uid velocity and (b) the pressure at three di�erent grid resolutions are compared to the exact solution.
Even at crude resolutions the numerical results in the bulk liquid and vapor are in excellent agreement
with the exact solution. At the interface the exact solution is perfectly discontinuous while the numeri-

cal interface has a ®nite thickness which decreases as the resolution increases.
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ation due to vaporization at the liquid±vapor interface and vapor removal due to the break o�

and rise of vapor bubbles from the interface.

By de®ning scales of length, l � ÿm2L=Gr2L�1=3, velocity, Uo=(Gl)1/2, gravity, G, temperature

(measured from Tsat), rGL/rLcL and pressure (measured from the reference ambient system

pressure, P1), rLGl, the problem can be characterized by the Morton number, M � m4LG=g
3rL,

the Prandtl number, Pr = mLcL/kL, a capillary parameter, s = cLTsatg/rGL
2l and the nondimen-

sional kinetic mobility, W � r2LcLU0=rGLj. In addition, the Nusselt number, Nu= kLqw/kGTw,

is formed using the nondimensional wall heat ¯ux, qw, (the dimensional wall heat ¯ux scaled by

rGkLL/rLcLl) and wall temperature, Tw. Note that the Nusselt number is not set beforehand,

but can change both spatially and temporally during the calculation depending on the value of

the local wall temperature, Tw.

The computations are performed in a rectangular domain which is periodic in the x-direction.

To allow for vaporization, ¯uid is allowed to exit at the top boundary where the pressure is

speci®ed to be zero. The temperature ®eld is initially zero everywhere with a heat ¯ux, qw,

applied to the rigid bottom wall.

Figure 2 shows results of a ®lm boiling calculation at four di�erent times, t= 2, 14, 30, 40.

The calculation is performed in a computational box of dimensions (Hx, Hy) = (57.4, 180), with

150� 300 grid resolution and the following dimensionless parameters:

rL
rG
� 5:22,

mL
mG
� 3:37,

kL
kG
� 3:42,

cL
cG
� 0:882,

qw � 10,Pr � 1:51,M � 10ÿ3, s � 0:024, W � 0:03:

Except for the Morton number, these parameters correspond to those of hydrogen at 8 atm

pressure (Maddox 1983). The actual Morton number for hydrogen is about 7.5� 10ÿ12. The

interface is given an initial shape described by

ys � yc � Es�cos�2pnsxs=Hx� � sin�pnsxs=Hx�� �48�
where yc, Es and ns are the average initial interface height, perturbation amplitude and pertur-

bation mode, respectively. For this run we choose a two-mode shape: yc=12, Es=ÿ 4, ns=2.

The horizontal dimension of the box, Hx=57.4, is 1.5 times the most unstable wavelength of

the inviscid Rayleigh±Taylor instability, l�d � 2p
�
3=
ÿ
M 1=3�1ÿ rG=rL�

��1=2
.

In each frame, the interface is plotted as the solid black line. The left half shows the tempera-

ture ®eld as shades of gray with black being the hottest and white the coolest. The temperature

scale is the same for all four frames. (To better illustrate the temperature ®eld in this plot, tem-

peratures above 60 are shown as black. The temperatures for this calculation actually range

from 0 to 210 with the highest temperatures being at the wall.) The right half shows velocity

vectors which, for clarity, are plotted only at every eighth grid point. In ®gure 2 the liquid±va-

por interface begins to exhibit a Rayleigh±Taylor instability with the formation of counter-rotat-

ing vortices. The larger of the two bulges grows quickly (b), is released from the vapor layer

and forms a rising vapor bubble (c). The smaller bulge is pushed down as cold liquid is forced

toward the bottom wall by the upward motion of the adjacent bubble. More vapor is generated

since the liquid rapidly evaporates as it approaches the wall. Contact of the liquid with the wall

is thus prevented. (At a lower wall heat ¯ux, wall contact should occur, but the study of this

e�ect and nucleate and transition boiling regimes is the subject of future work.) In (d) the

upward motion of the bubble causes this additional vapor to be pulled away from the wall to

form a second bubble directly underneath the ®rst.

This so-called parent±son bubble behavior has been observed in experiments by Shoji et al.

(1990). Studying ®lm boiling from a copper sphere, they noticed that, at high heat ¯ux when

vapor is rapidly being produced, a son bubble forms just as the parent is released. The son is

entrained and elongated by the recirculatory ¯ow behind the parent and is pulled from the sur-

face more quickly. The e�ective diameter of both bubbles was roughly the same. The simulation

here shows precisely these qualitative features of the parent±son bubble behavior: recirculatory
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Figure 2. A simulation of ®lm boiling shown at times, t = 2, 14, 30, 40. The interface is plotted as the solid black line,
the temperature ®eld is shown on the left and velocity vectors (plotted only at every eighth grid point) are shown on the
right. In this sequence, the liquid±vapor interface undergoes a Rayleigh±Taylor instability with subsequent pinch o� and
rise of a vapor bubble. The upward motion of this bubble causes additional vapor to be pulled away from the wall to
form a second bubble directly underneath the ®rst. The calculation is performed in a computational box of dimensions
(Hx,Hy) = (57.4, 180), with 150�300 grid resolution and the following dimensionless parameters: rL/rG=5.22, mL/
mG=3.37, kL/kG=3.42, cL/cG=0.882, qw=10, Pr = 1.51, M= 10ÿ3, s = 0.024, u = 0.03. Except for the Morton num-

ber, these parameters correspond to those of hydrogen at 8 atm pressure (Maddox, 1983).
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¯ow behind the parent resulting in elongation and entrainment of the son bubble with both
bubbles containing similar volumes.

In the simulation the parent bubble assumes a skirted shape. This skirt separates from the
parent bubble and is entrained below the son bubble. The detailed structure of the temperature
inside the bubbles can be visualized. The parent bubble is released before signi®cant heat can be
convected into it. The son bubble, however, is fed by hotter vapor that has just been generated.
Heat is convected into its interior as a jet of hot vapor. A liquid drop which had been entrained
inside the son bubble during its formation causes the hot vapor to de¯ect downward.

To illustrate that the results are essentially independent of the mesh, we plot the rising vapor
bubble at t= 18 for three di�erent grid resolutions. Since we are simulating a highly unsteady
problem (unlike the steady rise of a vapor bubble, for example) and the instabilities depend sen-
sitively on the amount of noise present we do not expect identical results. However, in ®gure 3,
the interfaces are obviously very similar even for the coarsest mesh. The 150� 300 mesh is an
essentially converged solution. These results also include the e�ect of temporal discretization
since the time step decreases with increasing spatial re®nement. We also plot the Nusselt num-
ber, vapor volume fraction and total interface length vs time for these three resolutions in
®gure 4. The Nusselt number for the two ®ner meshes are nearly identical while the vapor
volume fraction and total interface length are slightly more sensitive to the resolution. As the
interface becomes more convoluted with time, the resolution necessary to resolve the smaller fea-
tures increases.

For the calculation shown in ®gure 5 we decrease the Morton number to 10ÿ6. The other par-
ameters are the same except qw=20, �Hx,Hy� �

ÿ
l�d ,3l

�
d

�
, yc=24 and Es=ÿ 2.67. The results are

shown at times, t = 4, 20, 40, 60. (Again, to better illustrate the temperature ®eld, temperatures
above 100 are shown as black. The temperatures for this calculation range from 0 to 510 with

Figure 3. A grid resolution study. The rising vapor bubble is plotted at t = 18 for three di�erent grid
resolutions for the simulation in ®gure 2. The interface shapes are very similar even for the coarsest
mesh and the 150� 300 mesh is an essentially converged solution. These results also include the e�ect

of temporal discretization since the time step decreases with increasing spatial re®nement.
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Figure 4. The Nusselt number (a), vapor volume fraction (b) and total interface length (c) are plotted vs time for three
di�erent grid resolutions. The Nusselt number for the two ®ner meshes are nearly identical while the vapor volume fraction

and total interface length are slightly more sensitive to the resolution.



Figure 5. Results from a ®lm boiling simulation at lower Morton number, M= 10ÿ6, are shown at
times, t = 4, 20, 40, 60. Initially, the interface behaves much like in the previous calculation, ®gure 2.
Here though, the hot vapor is much more quickly convected up into the mushroom shaped bubble,
thus preventing the pinch o� of its stem. The hot vapor jet impinges on the inside of the bubble cap.
Several symmetric, counter-rotating vortices within the bubble act to mix the hot and cold vapor. The
parameters are the same as for ®gure 2 except qw=20, (Hx,Hy) = (121, 363) yc=24 and Es=ÿ 2.67.
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the highest temperatures being at the wall.) Initially, the interface behaves much like in the pre-

vious calculation. The Rayleigh±Taylor instability sets in and forms a rising plume of vapor.

Here though, the hot vapor is much more quickly convected up into a mushroom shaped

bubble, thus preventing the pinch o� of its stem. The hot vapor jet impinges on the inside of

the bubble cap. Several symmetric, counter-rotating vortices within the bubble act to mix the

hot and cold vapor. Hot vapor is carried to lower portions of the bubble and cold vapor is car-

ried up towards the bubble cap. At the high wall temperatures in the simulation shown in

®gure 5, radiative energy transport from the wall to the liquid±vapor interface can be signi®cant.

For example, at T = 400 the heat ¯ux due to ideal blackbody radiation can be qrad=2, 10% of

the imposed wall heat ¯ux (Brentari and Smith 1964). The heat ¯ux for real surfaces with non-

blackbody emissivity and absorptivity would actually be somewhat lower. However, at this

point our code does not include the capability for energy transport by radiation.

Figure 6. A ®lm boiling calculation at high density ratio, rL/rG=1000. At this high density ratio, the
vapor very quickly expands to ®ll the computational domain as a Taylor bubble. A hot vapor jet is just
beginning to emerge into the bubble but most of the interior of the bubble is still relatively cool. mL/

mG=40, kL/kG=10, cL/cG=1, qw=40, Pr= 1, M= 0.1, s= 0, u= 0.008.

Table 2. Values of the exponents and coe�cients in equation (49) for four heat transfer correlations

Exponent Coe�cient

Correlation e1 e2 e3 C1 C2 C3

Chang (1959) 0 1 1/3 0.294 1 0.5
Berenson (1961) 1/6 3/2 1/4 0.425 1 0.5
Hamill and Baumeister (1966) 1/6 3/2 1/4 0.41 1 0.95
Klimenko and Shelepen (1982):
1/Tw<1.41cG/cL 0 1 1/3 0.169 0 1.41
1/Tw>1.41cG/cL 0 1 1/3 0.169 1 0
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The numerical calculations in ®gures 2 and 5 exhibit mushroom shaped bubble growth from
the vapor layer. Although mushroom shaped bubbles have been experimentally observed at high
heat ¯ux when large amounts of vapor are generated (Ervin et al. 1992; Okuyama et al. 1988),
it is more commonly seen that bubbles pinch o� from the vapor layer in a somewhat spheroidal
or ellipsoidal shape. In our simulations we cannot expect the bubbles to pinch o� as readily.
This is simply due to the fact that the computations are done in a two-dimensional geometry
and do not provide the necessary radial component of surface force at the bubble stem for rea-
listic pinch o�.

For a rough quantitative validation of our numerical predictions we can compare the simu-
lation in ®gure 2 to experimental data obtained by Class et al. (1960) on the ®lm boiling curve
(qw vs Tw) of hydrogen from a ¯at horizontal surface at 8.7 atm pressure. qw=10 for ®gure 2
and the spatially averaged wall temperature (after the initial transient) varies in time from about
Tw=107 to 180. The data of Class et al. (1960) show that at qw=10, the wall temperature, Tw is
about 145 which is within the range of our prediction. For ®gure 5, qw=20, however Class et al.
(1960) did not obtain data at these higher wall heat ¯uxes and temperatures.

In ®gure 6 a calculation at a density ratio of rL/rG=1000 is shown at t= 19. At this high
density ratio, the vapor very quickly expands to ®ll the computational domain as a Taylor
bubble. The interface does not exhibit the convoluted dynamics of the lower density ratio simu-
lations. A hot vapor jet is just beginning to emerge into the bubble, but most of the interior of
the bubble is still relatively cool. The computational domain is

ÿ
2l�d ,6l

�
d

�
with 100� 300 grid

resolution and the initial interface is described by yc=8, Es=ÿ 1, ns=2. The dimensionless par-
ameters used in this calculation are: mL/mG=40, kL/kG=10, cL/cG=1, qw=40, Pr = 1, M = 0.1,
s = 0, u = 0.008.

An important quantitative characterization of ®lm boiling is the wall heat transfer. Here we
brie¯y review some of the heat transfer correlations developed for laminar ®lm boiling over the
last several decades. Chang (1959) was the ®rst to study ®lm boiling on horizontal surfaces. His
physical model of ®lm boiling assumed that the average vapor ®lm thickness for a given heat

Figure 7. The local Nusselt number from the simulation in ®gure 5 is plotted at t = 4, 20, 40, 60. The
heat transfer and thus also the wall temperature vary enormously both in space and time. The highest
values occur near the left end of the computational domain where cold liquid is forced near the wall
and the vapor layer is thinnest. The lowest heat transfer is at the location directly under the bubble

where the vapor layer is thickest.
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Fig. 8(a±c)ÐCaption opposite.
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¯ux will be equal to a constant critical vapor ®lm thickness for instability of the ®lm. Whereas

Chang interpreted the vapor ®lm as having an irregular wavy structure with no apparent length

scale, the physical model of ®lm boiling of Berenson (1961) postulated that the vapor generated

in the ®lm is released from a regularly spaced array of vapor domes. In his model the most un-

stable wavelength of the Rayleigh±Taylor instability, ld, is the length scale that governs the

height, diameter and spacing of the domes. Berenson found that predictions using the corre-

lation developed from this model agreed with his experimental data on n-pentane and carbon

tetrachloride to within 10%. Using a similar physical model for the structure of the vapor ®lm,

Hamill and Baumeister (1966) derived a correlation based on the hypothesis that the ®lm boiling

process operates at a state of maximum entropy generation. Except for two of the coe�cients,

their correlation turned out to be virtually identical to Berenson's. More recently, Klimenko

(1981) and Klimenko and Shelepen (1982) developed a correlation that they found holds within

25% of the experimental measurements by many di�erent researchers on many di�erent ¯uids,

including cryogens. Their correlation uses the same basic physical model as Berenson (1961),

but also employs the Reynolds analogy for heat transfer. For laminar ¯ow, the correlations

described above can be expressed by

N � C1

�
M e1Pr

�
1ÿ rG

rL

�e2 rG
rL

mL
mG

kL
kG

�
C2

Tw
� C3

cG
cL

��e3
, �49�

where the particular values of the exponents, e1, e2, e3, and coe�cients, C1, C2, C3, for each of

the four correlations are given in table 2.

In ®gure 7 we plot the local values of the Nusselt number from the simulation in ®gure 5 at

M = 10ÿ6 vs x for several di�erent times. Obviously, the heat transfer and thus also the wall

temperature vary enormously both in space and time. In general, the highest values occur near

the left end of the computational domain where cold liquid is forced near the wall and the

vapor layer is thinnest. The lowest heat transfer is at the location directly under the bubble

where the vapor layer is thickest. The heat transfer behavior for the simulation in ®gure 2 at

M = 10ÿ3 is similar. The physical models of ®lm boiling used to develop the above correlations

neglect these spatial and temporal variations in wall temperature and vapor ®lm thickness.

However, it is clear that these variations are directly associated with the local, instantaneous

heat transfer. Thus the detailed small-scale information about the interface behavior, thermal

and ¯ow ®elds provided by these simulations can, it is hoped, identify crucial features, par-

ameters and assumptions for improved physical models and correlations.

In order to compare the simulations with the heat transfer predicted from [49], we spatially

average the wall heat transfer values from our simulations and plot this average vs time in

®gure 8. The comparison is shown for the simulations in: (a) ®gure 2 with M = 10ÿ3, rL/
rG=5.22; (b) ®gure 5 with M = 10ÿ6, rL/rG=5.22; and (c) ®gure 6 with M = 10ÿ1, rL/
rG=1000. After an initial transient the numerical results for Nusselt number agree rather well

with the correlations and certainly to within the accuracy of the 25% experimental data scatter

reported by Klimenko and Shelepen (1982). The numerical results for lower Morton number in

®gure 8(b) settle down to what may be a steady value at longer times and at these later times

are in especially good agreement with the correlation of Klimenko and Shelepen (1982),

Berenson (1961), Hamill and Baumeister (1966). For the high density ratio calculation in (c) the

Nusselt number is still evolving in time and it is di�cult to make a comparison with the corre-

lations.

Figure 8. Predicted average Nusselt number compared with [49] for the correlations of Chang (1959),
Berenson (1961), Hamill and Baumeister (1966) and Klimenko and Shelepen (1982), for the simulations
in (a) ®gure 2 with M= 10ÿ3, rL/rG=5.22, (b) ®gure 5 with M= 10ÿ6, rL/rG=5.22 and (c) ®gure 6
with M= 10ÿ1, rL/rG=1000. After an initial transient the numerical results for Nusselt number agree
well with the correlations and certainly to within the accuracy of the 25% experimental data scatter
reported by Klimenko and Shelepen (1982). For the high density ratio calculation in (c) the Nusselt

number is still evolving in time and it is di�cult to make a comparison to the correlations.
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Although the agreement is relatively good, conclusions that can be drawn from these plots
must be tempered by the fact that the numerical results are only in two-dimensions and do not
simulate a complete bubble ebullition cycle.

5 . CONCLUSIONS

A numerical method for direct numerical simulation of ®lm boiling has been presented. The
method is based on the ®nite di�erence/front tracking method of Unverdi and Tryggvason
(1992), but the addition of phase change has required extensive reformulation. To demonstrate
the ability of the method to deal with a complex interface geometry we have presented several
two-dimensional simulations of ®lm boiling, following the growth of the initial instability of the
®lm, through the departure of a vapor bubble. The overall heat transfer rates and wall tempera-
tures are in reasonably good agreement with experimental observations and correlations, but
there are di�erences between the computed interface geometry and what is seen in experiments.
The computed bubbles do not readily pinch o� from the vapor layer and this is due to the fact
that the computations are only two-dimensional. The formulation, however, applies equally well
to axisymmetric and fully three-dimensional ¯ows. The key di�culties with the three-dimen-
sional extension are related to the treatment of the front and most of those have already been
dealt with in the original, isothermal version of the method. With some minor modi®cations to
accommodate for the contact of the phase interface with rigid walls, we also plan to extend the
capability of the method to be able to investigate the nucleate and transition boiling regimes.
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